S-Estimation for Penalized Regression Splines
نویسندگان
چکیده
منابع مشابه
Bivariate Penalized Splines for Regression
In this paper the asymptotic behavior of penalized spline estimators is studied using bivariate splines over triangulations and an energy functional as the penalty. The rate of L2 convergence is derived, which achieves the optimal nonparametric convergence rate established by Stone (1982). The asymptotic normality of the penalized spline estimators is established, which is shown to hold uniform...
متن کاملSmoothness selection for penalized quantile regression splines.
Modern data-rich analyses may call for fitting a large number of nonparametric quantile regressions. For example, growth charts may be constructed for each of a collection of variables, to identify those for which individuals with a disorder tend to fall in the tails of their age-specific distribution; such variables might serve as developmental biomarkers. When such a large set of analyses a...
متن کاملMarginal longitudinal semiparametric regression via penalized splines.
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achie...
متن کاملOn Semiparametric Regression with O'sullivan Penalized Splines
An exposition on the use of O’Sullivan penalized splines in contemporary semiparametric regression, including mixed model and Bayesian formulations, is presented. O’Sullivan penalized splines are similar to P-splines, but have the advantage of being a direct generalization of smoothing splines. Exact expressions for the O’Sullivan penalty matrix are obtained. Comparisons between the two types o...
متن کاملSpatially Adaptive Bayesian Penalized Regression Splines (P-splines)
In this paper we study penalized regression splines (P-splines), which are low–order basis splines with a penalty to avoid undersmoothing. Such P–splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. Our approach is to model the penalty parameter inherent in the P–spline method as a heteroscedastic regression function. We develop a full Bay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2008
ISSN: 1556-5068
DOI: 10.2139/ssrn.1369113